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ABSTRACT

           It is intended to present a procedure for obtaining optimum economic dispatch
with consideration of control over the generating units during change of the load in
thermal power systems. Therefore, a mathematical model, which takes the transmission
losses into account, was built. The deviation in each of the rotational speed, system
frequency, electrical and mechanical power in addition to the deviation in transmission
losses, generated output powers of each unit and in the corresponding generation costs
can be computed during the change of the load from a time interval to the next one.
           The steady-state deviations of the above mentioned items can be computed,
also, in each time interval. The results, which were obtained from the application of
this model on a power system, have been presented and compared with other results.

1. INTRODUCTION

    The optimization time period (T) can be divided to (n) time intervals. The length

of each of each time interval equals ( t). The generation cost (K i )it of the generating

unit (i) can be expressed in a polynomial form as

          (Ki)it  =  ai [ (Pi)it ]2  +  bi (Pi)it  +  ci                               $/hour                        (1)

Where (Pi )it  is the generated real power in time interval (it) ; ai , bi and ci are

parameters of the generating unit (i).

          The total generation cost (TK)it of a power system containing (N) controllable

generating units in time interval (it) will be obtained as

                  (TK)it  = 


N

i 1

(Ki ) it                                      $/hour                        (2)

           While the total generation cost (TK) T of the system in the time period (T) can

be given by

                       (TK) T = 


n

it 1

(TK) it  ( t)                              $                                 (3)

           By taking the transmission losses into account, the power balance requires that

the sum of the controlled generation powers must equal the load demand (PL) it plus the



transmission losses (Pl ) it each time interval (it). Therefore, the power balance equation

can be written as




N

i 1

(Pi  )it    =  (PL )it  +  (Pl ) it    (4)

If the transmission losses can be neglected, the balance equation will be rewritten as




N

i 1

(Pi  )it    =  (PL )it                                                                                (5)

          Each generating unit must not be operated above its rating or below some

minimum value according to the following inequalities

      (Pi min )   (Pi  )it   ( Pi max  )       for    i  =  1, 2,……..  and N                 (6)

Where  (Pi min ) , ( Pi max  )  are the minimum and maximum power permitted for the

generating unit ( i ), respectively.

          A set of real generation powers must be selected that will minimize the cost

function in each time interval. Various techniques have been developed to solve the

problem of power system economic dispatching and to allocate the system load on

each generating unit [1-5]. In [6] a mathematical model has been built to calculate the

steady-state deviations in each of the system frequency, mechanical and electrical

power in addition to the generated output power of each generating unit without taking

the transmission losses in consideration. Other models have been presented, also by the

author in [7], when the transmission losses are taken into account. Thereby, the value

of the load changes (PL ) in each time interval has been taken as the difference

between the load value in this interval and its value in the previous one. It has been

taken, also as an optional specified constant value (PL sp ).

          In this work a solution for the problem of power system economic dispatching is

presented to allocate the system load on each generating unit in the system and to

obtain the deviations in the all above mentioned variables during each subinterval of

the building up or decaying time of the load from an interval to the next one.

2. THE MATHEMATICAL MODEL

          The rotational speed of a generating unit driven by a steam turbine will be

constant when the mechanical torque equals in magnitude the electrical torque. These

both toques act on the rotating mass of the generating unit and oppose each other. If the

electrical load is increased, the rotating system will begin to slow down. Thereby, the

mechanical torque must be increased to restore equilibrium and vice versa. The speed



is again held constant when the two torque become equal. The previous process must

be repeated constantly due to the changes of the electrical load in a power system.

          The following equation gives the relation of the rate of change of a generating

unit speed and the difference between the deviations in both mechanical (Pm )  and

electrical power (Pe ), respectively.

                          (Pm ) -  (Pe )  =  M
dt

d )(                                                         (7)

Where (M) is the angular momentum of the machine in watts per radian per second per

second or in Mw / pu frequency / sec on machine base, ( n )  is the nominal rotational

speed (rad /sec ), and (  ) is the deviation from this nominal value. Very little error is

involved by the assumption that (M) is constant and is equal to the value ( I  n ),

where I is the moment of inertia of the machine in ( Kg m2 ).

          Due to the change in the rotational speed, the change in load  ( PL )` , which is

the frequency-sensitive load change, can be given by

                                  ( PL )`  =  D (  )                                                                 (8)

Where (D) is defined as percent change in load divided by percent change in

frequency.

          The net change in the electrical power output is given by

    (Pe)   =   (  PL)  +  ( PL)`   =   (  PL )  +   D (  )                                        (9)

Where  (PL) is the nonfrequency –sensitive load change.

          The change in mechanical power input can be related to the change in the

rotational speed by

                        (Pm )   = - ( 1/ R ) (  )                                                                  (10)

Where ( R) is the ratio between the per unit change in frequency and the per unit

change in output of the generating unit,  R = the slope of the governor characteristic.

Eqns. (7) to (10) are given in [8].

          After damping out all synchronizing oscillations, the frequency will be constant

and equal to the same value for each unit [9], mathematical models corresponding to

this steady state ( ( d  (  ) / dt ) = 0 ) have been developed by the author and

presented in [ 6,7 ].

          Now, to formulate the proposed mathematical models for a power system

contains (N)-generating units to obtain a solution during the change of the load from

(PL ) it –1 to (PL ) it . The load change (PL ) it can be given by

             (PL ) it  =   (PL ) it -  (PL ) it –1         , it = 2,3,……….,n                        (11)



Where ( PL ) it  and  (PL ) it –1 are the steady-state values of the load in intervals (it) and

(it – 1), respectively.

          Substitute Eqns. (9) and (10) in Eqn. (7), to obtain for unit (i) the following

equation during synchronizing oscillations:

- ( 1 / Ri ) (  ) -  (PL  i ) - D i  (  )  =  M i
dt

d )(      , i = 1,2,…..and N       (12)

(PL i ) can be defined as the change in the controlled generation of unit (i).

          By taking the transmission losses into account, the power balance requires that

the sum of the changes in the controlled generation powers must equal to the load

change ( PL ) plus the change of transmission losses (Pl ) during synchronizing

oscillations.




N

i 1

( PL i  )  =    (PL )  +  (Pl  )                                                (13)

 i.e.,              (P L i )   =   ( PL )  +  (Pl ) - 




N

ij
j

P
1
( L j )            (14)

          From Eqns. (12) and (14), the following equation for unit (i) can be obtained

- [ ( 1 / Ri )  +  D i ]  (  ) -  M i
dt

d )(     =    (P L i )

                     =   ( PL )  +  ( Pl ) - 




N

ij
j

P
1
( L j )                                                      (15)

          Add Eqns. (15) for the (N) generating units, to obtain

- [ 


N

i 1

( 1 / Ri )  + 


N

i 1

D i ] (  ) - 


N

i 1

M i
dt

d )( 

                               = 


N

i 1

(P L i )   =    (PL )  +  ( Pl )                                    (16)

Assume that,          Si   =  ( 1 /  R i  )  +  D i                                                             (17)

And                         S T = 


N

i 1

( 1 / Ri )  + 


N

i 1

D i   = 


N

i 1

S i                               (18)

                                M T  = 


N

i 1

M i                                                                          (19)



          Substitute Eqns. (18) and (19) in Eqn. (16), to obtain the change in the rotational

speed (   )

  (   )  = - { [ ( P L )  +  (P l ) ] /  S T  } -  ( M T  /  S T  )
dt

d )(                      (20)

Substitute Eqns. (17) and (20), to obtain the change in the controlled generation

 ( P L i ) of unit (i):

( PLi ) = (S i / ST ) [ ( PL) + (P l ) ] + (1/ S T ) (S i M T - S T M i ) dt
d )(          (21)

Assume,                       ( CP ) i   =  S i  /  S T                                                              (22)

Where ( CP ) i  can be defined as coefficient of participation of unit (i). Then,

(PLi )  =  ( CP ) i  [ (PL) + (P l ) ] + [ (CP) i  M T -  M i  ]
dt

d )(                   (23)

          When the transmission losses can be neglected  (P l   = 0 ), we will obtain from

Eqns. (20) and (23) the following corresponding equations:

             (   )      = - [ (PL ) / S T  ] -  ( M T  /  S T )
dt

d )(                          (24)

And,

( P L i )  = ( CP ) i  (P L )  +  [ (CP ) i  M T -  M i  ]
dt

d )(             (25)

          After damping out of synchronizing oscillations in the steady state, the following

equations will be delivered by substituting  [ ( d (   ) / dt ) = 0 ] in Eqns. (20) and

(23).

             (   )      = - [ (PL) + (P l ) ]  / S T                                                   (26)

                  ( P L i  )  =  ( CP ) i  [ (PL) + (P l ) ]                      (27)

          These two equations, which have been driven before in [7], will give the

following two equations, which have been driven before also in [6], if the transmission

losses are neglected:

           (   )      = -  ( PL ) /  S T                                                       (28)

                                ( P L i  )  = ( CP ) i  (PL )                                   (29)

          From Eqns. (8) to (10) we can obtain the following corresponding equations for

unit ( i ) in interval ( it).

                                ( PL i  )`  =  D i (  )                                                            (30)

                                ( Pe i  )   = ( P L i )  +  (  P L i )`                                       (31)

                               ( P m  i )  = - ( 1 / R i  ) (  )                                               (32)



The steady-state value of the system frequency (f ) and controlled generation

power ( P i ) of unit ( i ) will be obtained in the time interval (it ) from their values in

the previous one as follows, it  = 2,3,……. and n:

                                  ( f )      =  ( f ) it – 1    +  (  ) f                                                (33)

                                  ( P i  )  =  ( P i ) it – 1  + (  P L i )                                              (34)

          Runge-Kutta method is used to solve the differential Eqn. (20) during the

building up or decaying time of the load between intervals (it –1 ) and ( it ), during the

synchronizing oscillations. The length of this time is proportional inversely to the

changing speed of the load. This time will be divided into subintervals, in each one the

deviation in the rotational speed will be obtained by solving Eqn. (20). Also, deviations

in system frequency and controlled generation power of each unit are delivered from

Eqns. (33) and (34). Therefore, all deviations in each of the electrical, mechanical

power and transmission losses can be obtained by solving the correspond-

ing equations of the mathematical model. Thereby, the effect of the change in

frequency on the net load drawn by the system has been taken into account. The

solution at the end of the changing time of the load gives the steady-state deviations.

          Starting from an optimal economic solution in the first interval ( it = 1 ), this

suggested model satisfies the control of generation, holds the system frequency at or

very close to the specified nominal frequency and maintains the generation of each

generating unit at the most economic value during each subinterval of the load

changing time and, also, in the steady state for each time interval.

3. TEST EXAMPLE AND RESULTS

          The optimization time period, which is divided in 6 time intervals, is taken as 24

hours. Table (1) gives the load ( P L ) and the corresponding load change (PL ) in

each time interval. Table (2) shows cost functions, power limits and other given data of

each controlled generating unit of a power system.



Table (1) : Daily load curve data.

Interval (it)       1       2       3      4       5        6

Load (Mw)  210.00   375.00   470.00  400.00   320.00   180.00

Load change    0.0    165.00    95.00 - 70.00 - 80.00 - 140.00

Table (2) : The given data of each controlled generating unit.

 Unit     A i     b i     c i  P i  max  P i min     D i     R i    M i

   1

   2

   3

0.00533

0.00889

0.00741

 11.669

 10.333

 10.833

  213.1

  200.0

  240.0

 200.0

 150.0

 180.0

  50.0

  37.0

  45.0

  0.80

  0.90

  1.00

 0.01

 0.03

 0.02

 4.00

 3.75

 3.50

          Let the transmission losses ( P l ) to be expressed by the following equation which

gives ( P l ) in per unit on 100 MVA base ( all generation powers must be per unit on

100 MVA base ).

0.06760      0.00953 -0.00507              P 1

P l   =  [  P 1      P 2      P 3  ]        0.00953      0.05210       0.00901               P 2

-0.00507     0.00901       0.02940               P 3

                                           P 1

        +  [ -0.07660 -0.00342    0.01890 ]       P 2        +  0.040357

                                                                         P 3

   To apply the mathematical model without taking the transmission losses into

account the following generating powers are taken as a solution for starting in the first

time interval  ( it = 1 , P L = 210 Mw ), [8]:

- P 1 = 50  Mw,     P 2 = 88.07  Mw  and   P 3  = 71.93  Mw

          When the transmission losses ( P l ) will be considered, the corresponding starting

values at the first interval are taken in mega-watts as follows, [8]:

- P 1 = 60.268,     P 2 = 79.446,     P 3  = 80.150    and    P l  = 9.865

          The starting value of the system frequency has been taken as 50 cycle/sec.  The

load change ( P L ) it  in interval (it ) is the difference between the load of this interval



and the load of the previous one. The length of the time ( LT), at which the load will be

built up or will be decayed from (P L) it – 1 to the corresponding value in the next interval

 ( P L ) it , may be obtained from the following equation:

                         ( LT ) =      (P L ) it  / v                                                                     (35)

Where v is the speed change of the load in Mw/min.  When the transmission losses

taken into account, Eqn. (33) can be rewritten as

                                             ( P 1 ) it – 1

   ( LT )  =    {  (P L ) it   +                           ( P L ) it   }  /  v                                       (36)

                          ( P L ) it – 1

Where [ ( ( P l ) it – 1    /  ( P L ) it – 1  ) ( P L ) it  ] represents an approximate estimated value

for the transmission losses in interval ( it ).

          To solve the differential equations, (20) or (24), Runge-Kutta method, [10], has

been applied. The solution represents, step-by-step, a series of values for the dependent

variable (  ) corresponding to selected values of the time ( t ) as an independent

variable. The time ( LT ) is divided to subintervals ( length of each subinterval (h) is

taken as 0.1 minute ). The procedure is to select values of the independent variable at

these fixed subintervals.

Table (3) : The solution during the building up time of the load from 210 to 375 Mw

(Transmission losses are neglected )

 Time

 (min.)

  x

10 – 6

    f

cycle/s

 P 1  P 2 P 3    P 1    P 2    P 3

0.0

0.1

0.2

0.3

0.4

0.5

……

32.8

32.9

0.0

-3.9

-5.0

-5.3

-5.3

-5.4

…….

-5.4

-5.4

50.0

49.99981

49.99956

49.99929

49.99903

49.99876

……….

49.91224

49.91198

0.0

0.2456

0.2641

0.2691

0.2704

0.2708

…….

0.2709

0.2709

0.0

0.1123

0.0975

0.0935

0.0924

0.0921

……..

0.0920

0.0920

0.0

0.1421

0.1384

0.1374

0.1372

0.1371

……..

0.1371

0.1371

50.00

50.25

50.51

50.78

51.05

51.32

…….

139.10

139.37

88.07

88.18

88.28

88.37

88.47

88.56

…….

118.37

118.46

71.93

72.07

72.21

72.35

72.49

72.62

…….

117.03

117.17



          The initial values of the dependent and independent variables are taken    =  0

and t = 0. In each subinterval we can obtain the corresponding deviations in each of the

rotational speed, system frequency and output power of each generating unit in addition

to the deviations in mechanical and electrical power of the units. The deviation in the

transmission losses can, also, be obtained.

          Tables (3) and (4) show parts from the solution when the load builds up from 210

Mw in the first interval (it =1) to 375  Mw in the second interval (it =2), for both cases

of the transmission losses.

Table (4) : The solution during the building up of the load from 210 – 375  Mw

(Transmission losses are taken into account )

Time

Min.

  x

10 – 5

    f

cycle/s

P1 P2 P3   P1    P2    P3  P l   P l

  0.0

  0.1

  0.2

  0.3

  0.4

  0.5

 ……

  36.4

  36.5

 0.0

-0.4

-0.5

-0.5

-0.5

-0.5

…….

-0.6

-0.6

50.0

49.9998

49.9996

49.9993

49.9991

49.9988

……….

49.9032

49.9029

 0.0

0.23

0.25

0.26

0.26

0.26

…..

0.28

0.28

0.0

0.11

0.09

0.09

0.09

0.09

……

0.10

0.10

0.0

0.14

0.13

0.13

0.13

0.13

……

0.14

0.14

60.3

60.5

60.8

61.0

61.3

61.5

……

158.6

158.9

79.4

79.6

79.7

79.7

79.8

79.9

……

112.9

113.0

80.2

80.3

80.4

80.6

80.7

80.8

……

129.9

130.1

0.000

0.024

0.023

0.022

0.022

0.022

……

0.072

0.072

9.87

9.89

9.91

9.93

9.96

9.98

…..

26.5

26.6

  Tables (5) and (6) give parts of the solutions, when the load decays from 470 Mw

in the third interval ( it =3 ) to 400 Mw in the fourth one ( it = 4 ), also for both cases of

the transmission losses.



Table (5) : The solution during the decaying of the load from 470 Mw to 400 Mw

                  (Transmission losses are neglected ).

Time

min.

  x

10 –6

      f

  cycle/s

P1 P2 P3     P1     P2    P3

  0.0

  0.1

  0.2

  0.3

  0.4

  0.5

 ……

  13.8

  13.9

 0.0

 3.9

 5.0

 5.3

 5.3

 5.4

…….

 5.4

 5.4

49.86000

49.86020

49.86044

49.86071

49.86097

49.86124

……….

49.89702

49.89729

 0.0

-0.246

-0.264

-0.269

-0.270

-0.271

…..

-0.271

-0.271

 0.0

-0.112

-0.098

-0.094

-0.092

-0.092

……

-0.092

-0.092

 0.0

-0.142

-0.138

-0.137

-0.137

-0.137

……

-0.137

-0.137

190.84

190.63

190.37

190.10

189.83

189.56

……

153.26

152.99

135.94

135.79

135.70

135.61

135.51

135.42

……

123.09

123.00

143.21

143.07

142.93

142.79

142.65

142.52

……

124.15

124.01

          Results can be obtained for all changes of the load between the different time

intervals. The obtained results at the end of the building up or decaying time of the load

from an interval to the next one represent the steady state values, which belong this next

interval.

          All steady-state results for the intervals from ( it =2 ) to ( it = 6 ) are given in

Tables (7) and (8). These are the results obtained at the last subinterval for the building

up or decaying time of the load from an interval to the next one. Also, these tables

contain for comparison the corresponding results, which are obtained from the steady-

state mathematical models in [7].



Table (6) : The solution during the decaying of the load from 470 to 400 Mw

                  ( Transmission losses are taken into account )

Time

Min.

  x

10 – 5

    f

 cycle/s

 P1  P2  P3    P1    P2    P3  P l  P l

  0.0

  0.1

  0.2

  0.3

  0.4

  0.5

 ……

 6.1

 6.2

 0.0

 1.7

 1.5

 1.5

 1.5

 1.5

…….

 1.4

 1.4

49.8422

49.8431

49.8438

49.8446

49.8453

49.8461

……….

49.8871

49.8878

 0.0

-1.1

-0.75

-0.74

-0.74

-0.74

…..

-0.71

-0.71

0.0

-0.50

-0.24

-0.25

-0.25

-0.25

……

-0.24

-0.24

0.0

-0.63

-0.37

-0.38

-0.38

-0.38

……

-0.36

-0.36

200.0

198.9

198.2

197.4

196.7

195.9

……

154.6

153.8

150.0

149.5

149.3

149.0

148.8

148.5

……

134.5

134.2

165.0

164.3

164.0

163.2

162.8

162.8

……

141.9

141.6

 0.00

-1.1

-0.25

-0.25

-0.25

-0.25

……

-0.19

-0.19

45.6

44.5

44.3

44.0

43.8

43.5

….

31.1

30.9

          In Table (7), the comparison is made for the generated power of each unit, the

total generated power, the deviation in the mechanical power of each unit ( which

equals, approximately, the deviation in the electrical power) and the deviation in the

rotational speed in addition to the system frequency. When the transmission losses are

taken into account, the comparison has been repeated again for all above mentioned

variables in addition to the value of the transmission losses and it has been presented in

Table (8).



Table (7) : Steady-state comparison, when the transmission losses have been neglected.

  Interval  ( it )      2     3     4      5    6

          P L 375.0 470.0 400.0 320.0 180.0

PL 165.0 95.0 -70.0 -80.0 -140.0

   Results in [7] 139.40 190.88 152.95 109.60 50.0

   P 1   Obtained results 139.37 190.84 152.99 109.64 50.0

   Results in [7] 118.43 135.91 123.03 108.31 82.55

   P 2   Obtained results 118.46 135.94 123.00 108.28 82.52

   Results in [7] 117.16 143.21 124.02 102.09 47.45

   P 3   Obtained results 117.17 143.21 124.01 102.08 47.48

   Results in [7] 347.99 470.00 400.00 320.00 180.00

   P T   Obtained results 375.00 469.99 400.00 320.00 180.00

   Results in [7] 88.69 51.67 -37.63 -43.01 -75.26

P m 1   Obtained results 88.59 50.97 -37.53 -42.90 -75.16

   Results in [7] 29.57 17.02 -12.54 -14.33 -25.09

 P m 2   Obtained results 29.53 16.99 -12.51 -14.30 -25.05

   Results in [7] 44.35 25.53 -18.81 -21.50 -37.63

 P m 3   Obtained results 44.30 25.48 -18.76 -21.45 -37.58

   Results in [7] -0.00178 -0.00102 0.00075 0.00086 0.00150

    Obtained results -0.00177 -0.00102 0.00075 0.00085 0.00153

   Results in [7] 49.911 49.860 49.898 49.941 50.016

   F   Obtained results 49.912 49.861 49.897 49.941 50.016



Table (8) : Steady-state comparison, when the transmission losses have been taken in

consideration

   Interval  ( it )      2     3     4      5    6

          P L 375.0 470.0 400.0 320.0 180.0

PL 165.0 95.0 -70.0 -80.0 -140.0

   Results in [7] 158.71 200.00 154.56 105.26 50.0

   P 1   Obtained results 158.91 200.00 153.84 104.45 50.0

   Results in [7] 112.88 150.00 134.57 117.83 90.41

   P 2 Obtained results 112.99 150.00 134.22 117.39 89.92

   Results in [7] 129.96 164.97 141.98 117.04 48.58

   P 3   Obtained results 130.09 166.12 141.55 116.53 49.34

Results in [7] 26.55 44.98 31.11 20.13 8.99

   P l Obtained results 26.61 45.59 30.89 19.95 11.07

   Results in [7] 401.55 514.97 431.11 340.13 188.99

   P T   Obtained results 401.98 516.12 429.61 338.37 189.26

   Results in [7] 97.66 61.24 -45.08 -48.90 -80.09

P m 1   Obtained results 97.75 61.24 -45.63 -48.89 -80.05

   Results in [7] 32.55 20.41 -15.03 -16.30 -26.70

 P m 2   Obtained results 32.59 20.41 -15.21 -16.29 -26.68

   Results in [7] 48.83 30.62 -22.54 -24.45 -40.05

 P m 3   Obtained results 48.89 30.62 -22.81 -24.45 -40.02

   Results in [7] -0.00195 -0.00123 0.00090 0.00098 0.00160

    Obtained results -0.00196 -0.00123 0.00091 0.00098 0.00160

   Results in [7] 49.902 49.841 49.886 49.935 50.015

   F   Obtained results 49.903 49.842 49.888 49.937 50.017



4. CONCLUSIONS

          The proposed procedure gives the deviations in each of the rotational speed,

electrical and mechanical power of each generation unit in addition to the deviations in

frequency, transmission losses and generated power of each unit during the changing

time of the load, either the load builds up or decays from an interval to the next

interval.

          The steady-state values of the above mentioned variables can, also, be calculated

at the end of this changing time. The agreement between the obtained results and the

results, which are obtained before in [7], verifies that the presented procedure is

feasible and valid for the steady-state solution and the solution during the changing of

the load. This last solution illustrates that the generated power of each generating unit

in each subinterval of the changing time of the load is less than the steady-state value.

This leads to reduce the optimum generating costs in each time interval.
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